Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PINCH: An Adversarial Extraction Attack Framework for Deep Learning Models (2209.06300v2)

Published 13 Sep 2022 in cs.CR, cs.AI, and cs.LG

Abstract: Adversarial extraction attacks constitute an insidious threat against Deep Learning (DL) models in-which an adversary aims to steal the architecture, parameters, and hyper-parameters of a targeted DL model. Existing extraction attack literature have observed varying levels of attack success for different DL models and datasets, yet the underlying cause(s) behind their susceptibility often remain unclear, and would help facilitate creating secure DL systems. In this paper we present PINCH: an efficient and automated extraction attack framework capable of designing, deploying, and analyzing extraction attack scenarios across heterogeneous hardware platforms. Using PINCH, we perform extensive experimental evaluation of extraction attacks against 21 model architectures to explore new extraction attack scenarios and further attack staging. Our findings show (1) key extraction characteristics whereby particular model configurations exhibit strong resilience against specific attacks, (2) even partial extraction success enables further staging for other adversarial attacks, and (3) equivalent stolen models uncover differences in expressive power, yet exhibit similar captured knowledge.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.