Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tailoring Molecules for Protein Pockets: a Transformer-based Generative Solution for Structured-based Drug Design (2209.06158v1)

Published 30 Aug 2022 in q-bio.BM and cs.LG

Abstract: Structure-based drug design is drawing growing attentions in computer-aided drug discovery. Compared with the virtual screening approach where a pre-defined library of compounds are computationally screened, de novo drug design based on the structure of a target protein can provide novel drug candidates. In this paper, we present a generative solution named TamGent (Target-aware molecule generator with Transformer) that can directly generate candidate drugs from scratch for a given target, overcoming the limits imposed by existing compound libraries. Following the Transformer framework (a state-of-the-art framework in deep learning), we design a variant of Transformer encoder to process 3D geometric information of targets and pre-train the Transformer decoder on 10 million compounds from PubChem for candidate drug generation. Systematical evaluation on candidate compounds generated for targets from DrugBank shows that both binding affinity and drugability are largely improved. TamGent outperforms previous baselines in terms of both effectiveness and efficiency. The method is further verified by generating candidate compounds for the SARS-CoV-2 main protease and the oncogenic mutant KRAS G12C. The results show that our method not only re-discovers previously verified drug molecules , but also generates novel molecules with better docking scores, expanding the compound pool and potentially leading to the discovery of novel drugs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.