Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

High Performance Dataframes from Parallel Processing Patterns (2209.06146v1)

Published 13 Sep 2022 in cs.DC

Abstract: The data science community today has embraced the concept of Dataframes as the de facto standard for data representation and manipulation. Ease of use, massive operator coverage, and popularization of R and Python languages have heavily influenced this transformation. However, most widely used serial Dataframes today (R, pandas) experience performance limitations even while working on even moderately large data sets. We believe that there is plenty of room for improvement by investigating the generic distributed patterns of dataframe operators. In this paper, we propose a framework that lays the foundation for building high performance distributed-memory parallel dataframe systems based on these parallel processing patterns. We also present Cylon, as a reference runtime implementation. We demonstrate how this framework has enabled Cylon achieving scalable high performance. We also underline the flexibility of the proposed API and the extensibility of the framework on different hardware. To the best of our knowledge, Cylon is the first and only distributed-memory parallel dataframe system available today.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.