Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

VL-Taboo: An Analysis of Attribute-based Zero-shot Capabilities of Vision-Language Models (2209.06103v1)

Published 12 Sep 2022 in cs.CV, cs.AI, and cs.CL

Abstract: Vision-LLMs trained on large, randomly collected data had significant impact in many areas since they appeared. But as they show great performance in various fields, such as image-text-retrieval, their inner workings are still not fully understood. The current work analyses the true zero-shot capabilities of those models. We start from the analysis of the training corpus assessing to what extent (and which of) the test classes are really zero-shot and how this correlates with individual classes performance. We follow up with the analysis of the attribute-based zero-shot learning capabilities of these models, evaluating how well this classical zero-shot notion emerges from large-scale webly supervision. We leverage the recently released LAION400M data corpus as well as the publicly available pretrained models of CLIP, OpenCLIP, and FLAVA, evaluating the attribute-based zero-shot capabilities on CUB and AWA2 benchmarks. Our analysis shows that: (i) most of the classes in popular zero-shot benchmarks are observed (a lot) during pre-training; (ii) zero-shot performance mainly comes out of models' capability of recognizing class labels, whenever they are present in the text, and a significantly lower performing capability of attribute-based zeroshot learning is only observed when class labels are not used; (iii) the number of the attributes used can have a significant effect on performance, and can easily cause a significant performance decrease.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.