Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Analysis of Collocation on GPUs for Deep Learning Training (2209.06018v3)

Published 13 Sep 2022 in cs.LG and cs.DC

Abstract: Deep learning training is an expensive process that extensively uses GPUs, but not all model training saturates modern powerful GPUs. Multi-Instance GPU (MIG) is a new technology introduced by NVIDIA that can partition a GPU to better-fit workloads that do not require all the memory and compute resources of a full GPU. In this paper, we examine the performance of a MIG-enabled A100 GPU under deep learning workloads containing various sizes and combinations of models. We contrast the benefits of MIG to older workload collocation methods on GPUs: na\"ively submitting multiple processes on the same GPU and utilizing Multi-Process Service (MPS). Our results demonstrate that collocating multiple model training runs may yield significant benefits. In certain cases, it can lead up to four times training throughput despite increased epoch time. On the other hand, the aggregate memory footprint and compute needs of the models trained in parallel must fit the available memory and compute resources of the GPU. MIG can be beneficial thanks to its interference-free partitioning, especially when the sizes of the models align with the MIG partitioning options. MIG's rigid partitioning, however, may create sub-optimal GPU utilization for more dynamic mixed workloads. In general, we recommend MPS as the best performing and most flexible form of collocation for model training for a single user submitting training jobs.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.