Sparse Video Representation Using Steered Mixture-of-Experts With Global Motion Compensation (2209.05993v1)
Abstract: Steered-Mixtures-of Experts (SMoE) present a unified framework for sparse representation and compression of image data with arbitrary dimensionality. Recent work has shown great improvements in the performance of such models for image and light-field representation. However, for the case of videos the straight-forward application yields limited success as the SMoE framework leads to a piece-wise linear representation of the underlying imagery which is disrupted by nonlinear motion. We incorporate a global motion model into the SMoE framework which allows for higher temporal steering of the kernels. This drastically increases its capabilities to exploit correlations between adjacent frames by only adding 2 to 8 motion parameters per frame to the model but decreasing the required amount of kernels on average by 54.25%, respectively, while maintaining the same reconstruction quality yielding higher compression gains.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.