Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

List recoloring of planar graphs (2209.05992v2)

Published 13 Sep 2022 in math.CO and cs.DM

Abstract: A list assignment $L$ of a graph $G$ is a function that assigns to every vertex $v$ of $G$ a set $L(v)$ of colors. A proper coloring $\alpha$ of $G$ is called an $L$-coloring of $G$ if $\alpha(v)\in L(v)$ for every $v\in V(G)$. For a list assignment $L$ of $G$, the $L$-recoloring graph $\mathcal{G}(G,L)$ of $G$ is a graph whose vertices correspond to the $L$-colorings of $G$ and two vertices of $\mathcal{G}(G,L)$ are adjacent if their corresponding $L$-colorings differ at exactly one vertex of $G$. A $d$-face in a plane graph is a face of length $d$. Dvo\v{r}\'ak and Feghali conjectured for a planar graph $G$ and a list assignment $L$ of $G$, that: (i) If $|L(v)|\geq 10$ for every $v\in V(G)$, then the diameter of $\mathcal{G}(G,L)$ is $O(|V(G)|)$. (ii) If $G$ is triangle-free and $|L(v)|\geq 7$ for every $v\in V(G)$, then the diameter of $\mathcal{G}(G,L)$ is $O(|V(G)|)$. In a paper, Cranston (European J. Combin. (2022)) has proved (ii). In this paper, we prove the following results. Let $G$ be a plane graph and $L$ be a list assignment of $G$. $\bullet$ If for every $3$-face of $G$, there are at most two $3$-faces adjacent to it and $|L(v)|\geq 10$ for every $v\in V(G)$, then the diameter of $\mathcal{G}(G,L)$ is at most $190|V(G)|$. $\bullet$ If for every $3$-face of $G$, there is at most one $3$-face adjacent to it and $|L(v)|\geq 9$ for every $v\in V(G)$, then the diameter of $\mathcal{G}(G,L)$ is at most $13|V(G)|$. $\bullet$ If the faces adjacent to any $3$-face have length at least $6$ and $|L(v)|\geq 7$ for every $v\in V(G)$, then the diameter of $\mathcal{G}(G,L)$ is at most $242|V(G)|$. This result strengthens the Cranston's result on (ii).

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.