Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Rethink about the Word-level Quality Estimation for Machine Translation from Human Judgement (2209.05695v1)

Published 13 Sep 2022 in cs.CL

Abstract: Word-level Quality Estimation (QE) of Machine Translation (MT) aims to find out potential translation errors in the translated sentence without reference. Typically, conventional works on word-level QE are designed to predict the translation quality in terms of the post-editing effort, where the word labels ("OK" and "BAD") are automatically generated by comparing words between MT sentences and the post-edited sentences through a Translation Error Rate (TER) toolkit. While the post-editing effort can be used to measure the translation quality to some extent, we find it usually conflicts with the human judgement on whether the word is well or poorly translated. To overcome the limitation, we first create a golden benchmark dataset, namely \emph{HJQE} (Human Judgement on Quality Estimation), where the expert translators directly annotate the poorly translated words on their judgements. Additionally, to further make use of the parallel corpus, we propose the self-supervised pre-training with two tag correcting strategies, namely tag refinement strategy and tree-based annotation strategy, to make the TER-based artificial QE corpus closer to \emph{HJQE}. We conduct substantial experiments based on the publicly available WMT En-De and En-Zh corpora. The results not only show our proposed dataset is more consistent with human judgment but also confirm the effectiveness of the proposed tag correcting strategies.\footnote{The data can be found at \url{https://github.com/ZhenYangIACAS/HJQE}.}

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com