Papers
Topics
Authors
Recent
2000 character limit reached

Sample Complexity of an Adversarial Attack on UCB-based Best-arm Identification Policy (2209.05692v1)

Published 13 Sep 2022 in cs.LG, cs.AI, and cs.CR

Abstract: In this work I study the problem of adversarial perturbations to rewards, in a Multi-armed bandit (MAB) setting. Specifically, I focus on an adversarial attack to a UCB type best-arm identification policy applied to a stochastic MAB. The UCB attack presented in [1] results in pulling a target arm K very often. I used the attack model of [1] to derive the sample complexity required for selecting target arm K as the best arm. I have proved that the stopping condition of UCB based best-arm identification algorithm given in [2], can be achieved by the target arm K in T rounds, where T depends only on the total number of arms and $\sigma$ parameter of $\sigma2-$ sub-Gaussian random rewards of the arms.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.