Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

No existence of linear algorithm for Fourier phase retrieval (2209.05673v1)

Published 13 Sep 2022 in cs.IT, cs.IR, cs.NA, math.IT, and math.NA

Abstract: Fourier phase retrieval, which seeks to reconstruct a signal from its Fourier magnitude, is of fundamental importance in fields of engineering and science. In this paper, we give a theoretical understanding of algorithms for Fourier phase retrieval. Particularly, we show if there exists an algorithm which could reconstruct an arbitrary signal ${\mathbf x}\in {\mathbb C}N$ in $ \mbox{Poly}(N) \log(1/\epsilon)$ time to reach $\epsilon$-precision from its magnitude of discrete Fourier transform and its initial value $x(0)$, then $\mathcal{ P}=\mathcal{NP}$. This demystifies the phenomenon that, although almost all signals are determined uniquely by their Fourier magnitude with a prior conditions, there is no algorithm with theoretical guarantees being proposed over the past few decades. Our proofs employ the result in computational complexity theory that Product Partition problem is NP-complete in the strong sense.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube