Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Social-PatteRNN: Socially-Aware Trajectory Prediction Guided by Motion Patterns (2209.05649v1)

Published 12 Sep 2022 in cs.RO

Abstract: As robots across domains start collaborating with humans in shared environments, algorithms that enable them to reason over human intent are important to achieve safe interplay. In our work, we study human intent through the problem of predicting trajectories in dynamic environments. We explore domains where navigation guidelines are relatively strictly defined but not clearly marked in their physical environments. We hypothesize that within these domains, agents tend to exhibit short-term motion patterns that reveal context information related to the agent's general direction, intermediate goals and rules of motion, e.g., social behavior. From this intuition, we propose Social-PatteRNN, an algorithm for recurrent, multi-modal trajectory prediction that exploits motion patterns to encode the aforesaid contexts. Our approach guides long-term trajectory prediction by learning to predict short-term motion patterns. It then extracts sub-goal information from the patterns and aggregates it as social context. We assess our approach across three domains: humans crowds, humans in sports and manned aircraft in terminal airspace, achieving state-of-the-art performance.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube