Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Faithfulness and Coherence of Language Explanations for Recommendation Systems (2209.05409v1)

Published 12 Sep 2022 in cs.IR, cs.AI, and cs.CL

Abstract: Reviews contain rich information about product characteristics and user interests and thus are commonly used to boost recommender system performance. Specifically, previous work show that jointly learning to perform review generation improves rating prediction performance. Meanwhile, these model-produced reviews serve as recommendation explanations, providing the user with insights on predicted ratings. However, while existing models could generate fluent, human-like reviews, it is unclear to what degree the reviews fully uncover the rationale behind the jointly predicted rating. In this work, we perform a series of evaluations that probes state-of-the-art models and their review generation component. We show that the generated explanations are brittle and need further evaluation before being taken as literal rationales for the estimated ratings.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.