Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Utility of Buffers in Pick-n-Swap Based Lattice Rearrangement (2209.05390v2)

Published 12 Sep 2022 in cs.RO

Abstract: We investigate the utility of employing multiple buffers in solving a class of rearrangement problems with pick-n-swap manipulation primitives. In this problem, objects stored randomly in a lattice are to be sorted using a robot arm with k>=1 swap spaces or buffers, capable of holding up to k objects on its end-effector simultaneously. On the structural side, we show that the addition of each new buffer brings diminishing returns in saving the end-effector travel distance while holding the total number of pick-n-swap operations at the minimum. This is due to an interesting recursive cycle structure in random m-permutation, where the largest cycle covers over 60% of objects. On the algorithmic side, we propose fast algorithms for 1D and 2D lattice rearrangement problems that can effectively use multiple buffers to boost solution optimality. Numerical experiments demonstrate the efficiency and scalability of our methods, as well as confirm the diminishing return structure as more buffers are employed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube