Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Review on Visual-SLAM: Advancements from Geometric Modelling to Learning-based Semantic Scene Understanding (2209.05222v1)

Published 12 Sep 2022 in cs.RO and cs.AI

Abstract: Simultaneous Localisation and Mapping (SLAM) is one of the fundamental problems in autonomous mobile robots where a robot needs to reconstruct a previously unseen environment while simultaneously localising itself with respect to the map. In particular, Visual-SLAM uses various sensors from the mobile robot for collecting and sensing a representation of the map. Traditionally, geometric model-based techniques were used to tackle the SLAM problem, which tends to be error-prone under challenging environments. Recent advancements in computer vision, such as deep learning techniques, have provided a data-driven approach to tackle the Visual-SLAM problem. This review summarises recent advancements in the Visual-SLAM domain using various learning-based methods. We begin by providing a concise overview of the geometric model-based approaches, followed by technical reviews on the current paradigms in SLAM. Then, we present the various learning-based approaches to collecting sensory inputs from mobile robots and performing scene understanding. The current paradigms in deep-learning-based semantic understanding are discussed and placed under the context of Visual-SLAM. Finally, we discuss challenges and further opportunities in the direction of learning-based approaches in Visual-SLAM.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube