Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rook Theory of the Etzion-Silberstein Conjecture (2209.05114v1)

Published 12 Sep 2022 in math.CO, cs.IT, and math.IT

Abstract: In 2009, Etzion and Siberstein proposed a conjecture on the largest dimension of a linear space of matrices over a finite field in which all nonzero matrices are supported on a Ferrers diagram and have rank bounded below by a given integer. Although several cases of the conjecture have been established in the past decade, proving or disproving it remains to date a wide open problem. In this paper, we take a new look at the Etzion-Siberstein Conjecture, investigating its connection with rook theory. Our results show that the combinatorics behind this open problem is closely linked to the theory of $q$-rook polynomials associated with Ferrers diagrams, as defined by Garsia and Remmel. In passing, we give a closed formula for the trailing degree of the $q$-rook polynomial associated with a Ferrers diagram in terms of the cardinalities of its diagonals. The combinatorial approach taken in this paper allows us to establish some new instances of the Etzion-Silberstein Conjecture using a non-constructive argument. We also solve the asymptotic version of the conjecture over large finite fields, answering a current open question.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.