Rook Theory of the Etzion-Silberstein Conjecture (2209.05114v1)
Abstract: In 2009, Etzion and Siberstein proposed a conjecture on the largest dimension of a linear space of matrices over a finite field in which all nonzero matrices are supported on a Ferrers diagram and have rank bounded below by a given integer. Although several cases of the conjecture have been established in the past decade, proving or disproving it remains to date a wide open problem. In this paper, we take a new look at the Etzion-Siberstein Conjecture, investigating its connection with rook theory. Our results show that the combinatorics behind this open problem is closely linked to the theory of $q$-rook polynomials associated with Ferrers diagrams, as defined by Garsia and Remmel. In passing, we give a closed formula for the trailing degree of the $q$-rook polynomial associated with a Ferrers diagram in terms of the cardinalities of its diagonals. The combinatorial approach taken in this paper allows us to establish some new instances of the Etzion-Silberstein Conjecture using a non-constructive argument. We also solve the asymptotic version of the conjecture over large finite fields, answering a current open question.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.