Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Explaining Predictions from Machine Learning Models: Algorithms, Users, and Pedagogy (2209.05084v1)

Published 12 Sep 2022 in cs.LG

Abstract: Model explainability has become an important problem in ML due to the increased effect that algorithmic predictions have on humans. Explanations can help users understand not only why ML models make certain predictions, but also how these predictions can be changed. In this thesis, we examine the explainability of ML models from three vantage points: algorithms, users, and pedagogy, and contribute several novel solutions to the explainability problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)