Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization (2209.05045v3)

Published 12 Sep 2022 in math.OC, cs.CC, and cs.LG

Abstract: Nonsmooth nonconvex optimization problems broadly emerge in machine learning and business decision making, whereas two core challenges impede the development of efficient solution methods with finite-time convergence guarantee: the lack of computationally tractable optimality criterion and the lack of computationally powerful oracles. The contributions of this paper are two-fold. First, we establish the relationship between the celebrated Goldstein subdifferential~\citep{Goldstein-1977-Optimization} and uniform smoothing, thereby providing the basis and intuition for the design of gradient-free methods that guarantee the finite-time convergence to a set of Goldstein stationary points. Second, we propose the gradient-free method (GFM) and stochastic GFM for solving a class of nonsmooth nonconvex optimization problems and prove that both of them can return a $(\delta,\epsilon)$-Goldstein stationary point of a Lipschitz function $f$ at an expected convergence rate at $O(d{3/2}\delta{-1}\epsilon{-4})$ where $d$ is the problem dimension. Two-phase versions of GFM and SGFM are also proposed and proven to achieve improved large-deviation results. Finally, we demonstrate the effectiveness of 2-SGFM on training ReLU neural networks with the \textsc{Minst} dataset.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.