Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Predicting the Next Action by Modeling the Abstract Goal (2209.05044v5)

Published 12 Sep 2022 in cs.CV and cs.AI

Abstract: The problem of anticipating human actions is an inherently uncertain one. However, we can reduce this uncertainty if we have a sense of the goal that the actor is trying to achieve. Here, we present an action anticipation model that leverages goal information for the purpose of reducing the uncertainty in future predictions. Since we do not possess goal information or the observed actions during inference, we resort to visual representation to encapsulate information about both actions and goals. Through this, we derive a novel concept called abstract goal which is conditioned on observed sequences of visual features for action anticipation. We design the abstract goal as a distribution whose parameters are estimated using a variational recurrent network. We sample multiple candidates for the next action and introduce a goal consistency measure to determine the best candidate that follows from the abstract goal. Our method obtains impressive results on the very challenging Epic-Kitchens55 (EK55), EK100, and EGTEA Gaze+ datasets. We obtain absolute improvements of +13.69, +11.24, and +5.19 for Top-1 verb, Top-1 noun, and Top-1 action anticipation accuracy respectively over prior state-of-the-art methods for seen kitchens (S1) of EK55. Similarly, we also obtain significant improvements in the unseen kitchens (S2) set for Top-1 verb (+10.75), noun (+5.84) and action (+2.87) anticipation. Similar trend is observed for EGTEA Gaze+ dataset, where absolute improvement of +9.9, +13.1 and +6.8 is obtained for noun, verb, and action anticipation. It is through the submission of this paper that our method is currently the new state-of-the-art for action anticipation in EK55 and EGTEA Gaze+ https://competitions.codalab.org/competitions/20071#results Code available at https://github.com/debadityaroy/Abstract_Goal

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com