Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Numerical approximation based on deep convolutional neural network for high-dimensional fully nonlinear merged PDEs and 2BSDEs (2209.04997v2)

Published 12 Sep 2022 in math.NA and cs.NA

Abstract: This paper proposes two efficient approximation methods to solve high-dimensional fully nonlinear partial differential equations (NPDEs) and second-order backward stochastic differential equations (2BSDEs), where such high-dimensional fully NPDEs are extremely difficult to solve because the computational cost of standard approximation methods grows exponentially with the number of dimensions. Therefore, we consider the following methods to overcome this difficulty. For the merged fully NPDEs and 2BSDEs system, combined with the time forward discretization and ReLU function, we use multi-scale deep learning fusion and convolutional neural network (CNN) techniques to obtain two numerical approximation schemes, respectively. Finally, three practical high-dimensional test problems involving Allen-Cahn, Black-Scholes-Barentblatt, and Hamiltonian-Jacobi-Bellman equations are given so that the first proposed method exhibits higher efficiency and accuracy than the existing method, while the second proposed method can extend the dimensionality of the completely NPDEs-2BSDEs system over $400$ dimensions, from which the numerical results highlight the effectiveness of proposed methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.