Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Dynamic Subset Sum with Truly Sublinear Processing Time (2209.04936v1)

Published 11 Sep 2022 in cs.DS

Abstract: Subset sum is a very old and fundamental problem in theoretical computer science. In this problem, $n$ items with weights $w_1, w_2, w_3, \ldots, w_n$ are given as input and the goal is to find out if there is a subset of them whose weights sum up to a given value $t$. While the problem is NP-hard in general, when the values are non-negative integer, subset sum can be solved in pseudo-polynomial time $~\widetilde O(n+t)$. In this work, we consider the dynamic variant of subset sum. In this setting, an upper bound $\tmax$ is provided in advance to the algorithm and in each operation, either a new item is added to the problem or for a given integer value $t \leq \tmax$, the algorithm is required to output whether there is a subset of items whose sum of weights is equal to $t$. Unfortunately, none of the existing subset sum algorithms is able to process these operations in truly sublinear time\footnote{Truly sublinear means $n{1-\Omega(1)}$.} in terms of $\tmax$. Our main contribution is an algorithm whose amortized processing time\footnote{Since the runtimes are amortized, we do not use separate terms update time and query time for different operations and use processing time for all types of operations.} for each operation is truly sublinear in $\tmax$ when the number of operations is at least $\tmax{2/3+\Omega(1)}$. We also show that when both element addition and element removal are allowed, there is no algorithm that can process each operation in time $\tmax{1-\Omega(1)}$ on average unless \textsf{SETH}\footnote{The \textit{strong exponential time hypothesis} states that no algorithm can solve the satisfiability problem in time $2{n(1-\Omega(1))}$.} fails.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.