Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensionality Reduction using Elastic Measures (2209.04933v3)

Published 7 Sep 2022 in cs.LG, math.DG, and stat.CO

Abstract: With the recent surge in big data analytics for hyper-dimensional data there is a renewed interest in dimensionality reduction techniques for machine learning applications. In order for these methods to improve performance gains and understanding of the underlying data, a proper metric needs to be identified. This step is often overlooked and metrics are typically chosen without consideration of the underlying geometry of the data. In this paper, we present a method for incorporating elastic metrics into the t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). We apply our method to functional data, which is uniquely characterized by rotations, parameterization, and scale. If these properties are ignored, they can lead to incorrect analysis and poor classification performance. Through our method we demonstrate improved performance on shape identification tasks for three benchmark data sets (MPEG-7, Car data set, and Plane data set of Thankoor), where we achieve 0.77, 0.95, and 1.00 F1 score, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.