Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Complex Network based Graph Embedding Method for Link Prediction (2209.04884v1)

Published 11 Sep 2022 in cs.LG and cs.SI

Abstract: Graph embedding methods aim at finding useful graph representations by mapping nodes to a low-dimensional vector space. It is a task with important downstream applications, such as link prediction, graph reconstruction, data visualization, node classification, and language modeling. In recent years, the field of graph embedding has witnessed a shift from linear algebraic approaches towards local, gradient-based optimization methods combined with random walks and deep neural networks to tackle the problem of embedding large graphs. However, despite this improvement in the optimization tools, graph embedding methods are still generically designed in a way that is oblivious to the particularities of real-life networks. Indeed, there has been significant progress in understanding and modeling complex real-life networks in recent years. However, the obtained results have had a minor influence on the development of graph embedding algorithms. This paper aims to remedy this by designing a graph embedding method that takes advantage of recent valuable insights from the field of network science. More precisely, we present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms. We evaluate the performance of the proposed approach on the link prediction task on a large number of real-life networks. We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms. We also demonstrate its robustness to data scarcity and the choice of embedding dimensionality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.