Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Quantum Computers to Speed Up Dynamic Testing of Software (2209.04860v1)

Published 11 Sep 2022 in cs.SE, cs.ET, and quant-ph

Abstract: Software under test can be analyzed dynamically, while it is being executed, to find defects. However, as the number and possible values of input parameters increase, the cost of dynamic testing rises. This paper examines whether quantum computers (QCs) can help speed up the dynamic testing of programs written for classical computers (CCs). To accomplish this, an approach is devised involving the following three steps: (1) converting a classical program to a quantum program; (2) computing the number of inputs causing errors, denoted by $K$, using a quantum counting algorithm; and (3) obtaining the actual values of these inputs using Grover's search algorithm. This approach can accelerate exhaustive and non-exhaustive dynamic testing techniques. On the CC, the computational complexity of these techniques is $O(N)$, where $N$ represents the count of combinations of input parameter values passed to the software under test. In contrast, on the QC, the complexity is $O(\varepsilon{-1} \sqrt{N/K})$, where $\varepsilon$ is a relative error of measuring $K$. The paper illustrates how the approach can be applied and discusses its limitations. Moreover, it provides a toy example executed on a simulator and an actual QC. This paper may be of interest to academics and practitioners as the approach presented in the paper may serve as a starting point for exploring the use of QC for dynamic testing of CC code.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube