Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Anticipating the Unseen Discrepancy for Vision and Language Navigation (2209.04725v1)

Published 10 Sep 2022 in cs.CV and cs.CL

Abstract: Vision-Language Navigation requires the agent to follow natural language instructions to reach a specific target. The large discrepancy between seen and unseen environments makes it challenging for the agent to generalize well. Previous studies propose data augmentation methods to mitigate the data bias explicitly or implicitly and provide improvements in generalization. However, they try to memorize augmented trajectories and ignore the distribution shifts under unseen environments at test time. In this paper, we propose an Unseen Discrepancy Anticipating Vision and Language Navigation (DAVIS) that learns to generalize to unseen environments via encouraging test-time visual consistency. Specifically, we devise: 1) a semi-supervised framework DAVIS that leverages visual consistency signals across similar semantic observations. 2) a two-stage learning procedure that encourages adaptation to test-time distribution. The framework enhances the basic mixture of imitation and reinforcement learning with Momentum Contrast to encourage stable decision-making on similar observations under a joint training stage and a test-time adaptation stage. Extensive experiments show that DAVIS achieves model-agnostic improvement over previous state-of-the-art VLN baselines on R2R and RxR benchmarks. Our source code and data are in supplemental materials.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube