Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Application of Machine Learning for Online Reputation Systems (2209.04650v1)

Published 10 Sep 2022 in cs.LG, cs.AI, and cs.IR

Abstract: Users on the internet usually require venues to provide better purchasing recommendations. This can be provided by a reputation system that processes ratings to provide recommendations. The rating aggregation process is a main part of reputation system to produce global opinion about the product quality. Naive methods that are frequently used do not consider consumer profiles in its calculation and cannot discover unfair ratings and trends emerging in new ratings. Other sophisticated rating aggregation methods that use weighted average technique focus on one or a few aspects of consumers profile data. This paper proposes a new reputation system using machine learning to predict reliability of consumers from consumer profile. In particular, we construct a new consumer profile dataset by extracting a set of factors that have great impact on consumer reliability, which serve as an input to machine learning algorithms. The predicted weight is then integrated with a weighted average method to compute product reputation score. The proposed model has been evaluated over three MovieLens benchmarking datasets, using 10-Folds cross validation. Furthermore, the performance of the proposed model has been compared to previous published rating aggregation models. The obtained results were promising which suggest that the proposed approach could be a potential solution for reputation systems. The results of comparison demonstrated the accuracy of our models. Finally, the proposed approach can be integrated with online recommendation systems to provide better purchasing recommendations and facilitate user experience on online shopping markets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.