Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Differentially Private Stochastic Gradient Descent with Low-Noise (2209.04188v2)

Published 9 Sep 2022 in stat.ML, cs.CR, and cs.LG

Abstract: Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection. This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy. In this paper, we focus on the privacy and utility (measured by excess risk bounds) performances of differentially private stochastic gradient descent (SGD) algorithms in the setting of stochastic convex optimization. Specifically, we examine the pointwise problem in the low-noise setting for which we derive sharper excess risk bounds for the differentially private SGD algorithm. In the pairwise learning setting, we propose a simple differentially private SGD algorithm based on gradient perturbation. Furthermore, we develop novel utility bounds for the proposed algorithm, proving that it achieves optimal excess risk rates even for non-smooth losses. Notably, we establish fast learning rates for privacy-preserving pairwise learning under the low-noise condition, which is the first of its kind.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube