Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending Open Bandit Pipeline to Simulate Industry Challenges (2209.04147v1)

Published 9 Sep 2022 in cs.LG and cs.IR

Abstract: Bandit algorithms are often used in the e-commerce industry to train Machine Learning (ML) systems when pre-labeled data is unavailable. However, the industry setting poses various challenges that make implementing bandit algorithms in practice non-trivial. In this paper, we elaborate on the challenges of off-policy optimisation, delayed reward, concept drift, reward design, and business rules constraints that practitioners at Booking.com encounter when applying bandit algorithms. Our main contributions is an extension to the Open Bandit Pipeline (OBP) framework. We provide simulation components for some of the above-mentioned challenges to provide future practitioners, researchers, and educators with a resource to address challenges encountered in the e-commerce industry.

Citations (1)

Summary

We haven't generated a summary for this paper yet.