Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Framework for Evaluating Privacy-Utility Trade-off in Vertical Federated Learning (2209.03885v4)

Published 8 Sep 2022 in cs.LG, cs.CR, and cs.DC

Abstract: Federated learning (FL) has emerged as a practical solution to tackle data silo issues without compromising user privacy. One of its variants, vertical federated learning (VFL), has recently gained increasing attention as the VFL matches the enterprises' demands of leveraging more valuable features to build better machine learning models while preserving user privacy. Current works in VFL concentrate on developing a specific protection or attack mechanism for a particular VFL algorithm. In this work, we propose an evaluation framework that formulates the privacy-utility evaluation problem. We then use this framework as a guide to comprehensively evaluate a broad range of protection mechanisms against most of the state-of-the-art privacy attacks for three widely deployed VFL algorithms. These evaluations may help FL practitioners select appropriate protection mechanisms given specific requirements. Our evaluation results demonstrate that: the model inversion and most of the label inference attacks can be thwarted by existing protection mechanisms; the model completion (MC) attack is difficult to be prevented, which calls for more advanced MC-targeted protection mechanisms. Based on our evaluation results, we offer concrete advice on improving the privacy-preserving capability of VFL systems. The code is available at https://github.com/yankang18/Attack-Defense-VFL

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.