Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components (2209.03813v1)

Published 8 Sep 2022 in cs.LG and cs.AI

Abstract: Explainability techniques for data-driven predictive models based on artificial intelligence and machine learning algorithms allow us to better understand the operation of such systems and help to hold them accountable. New transparency approaches are developed at breakneck speed, enabling us to peek inside these black boxes and interpret their decisions. Many of these techniques are introduced as monolithic tools, giving the impression of one-size-fits-all and end-to-end algorithms with limited customisability. Nevertheless, such approaches are often composed of multiple interchangeable modules that need to be tuned to the problem at hand to produce meaningful explanations. This paper introduces a collection of hands-on training materials -- slides, video recordings and Jupyter Notebooks -- that provide guidance through the process of building and evaluating bespoke modular surrogate explainers for tabular data. These resources cover the three core building blocks of this technique: interpretable representation composition, data sampling and explanation generation.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.