Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MetaPriv: Acting in Favor of Privacy on Social Media Platforms (2209.03679v1)

Published 8 Sep 2022 in cs.SI

Abstract: Social networks such as Facebook (FB) and Instagram are known for tracking user online behaviour for commercial gain. To this day, there is practically no other way of achieving privacy in said platforms other than renouncing their use. However, many users are reluctant in doing so because of convenience or social and professional reasons. In this work, we propose a means of balancing convenience and privacy on FB through obfuscation. We have created MetaPriv, a tool based on simulating user interaction with FB. MetaPriv allows users to add noise interactions to their account so as to lead FB's profiling algorithms astray, and make them draw inaccurate profiles in relation to their interests and habits. To prove our tool's effectiveness, we ran extensive experiments on a dummy account and two existing user accounts. Our results showed that, by using our tool, users can achieve a higher degree of privacy in just a couple of weeks. We believe that MetaPriv can be further developed to accommodate other social media platforms and help users regain their privacy, while maintaining a reasonable level of convenience. To support open science and reproducible research, our source code is publicly available online.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Robert Cantaragiu (1 paper)
  2. Antonis Michalas (19 papers)
  3. Eugene Frimpong (3 papers)
  4. Alexandros Bakas (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.