Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Learning Models for Detecting Malware Attacks (2209.03622v2)

Published 8 Sep 2022 in cs.CR

Abstract: Malware is one of the most common and severe cyber-attack today. Malware infects millions of devices and can perform several malicious activities including mining sensitive data, encrypting data, crippling system performance, and many more. Hence, malware detection is crucial to protect our computers and mobile devices from malware attacks. Deep learning (DL) is one of the emerging and promising technologies for detecting malware. The recent high production of malware variants against desktop and mobile platforms makes DL algorithms powerful approaches for building scalable and advanced malware detection models as they can handle big datasets. This work explores current deep learning technologies for detecting malware attacks on the Windows, Linux, and Android platforms. Specifically, we present different categories of DL algorithms, network optimizers, and regularization methods. Different loss functions, activation functions, and frameworks for implementing DL models are presented. We also present feature extraction approaches and a review of recent DL-based models for detecting malware attacks on the above platforms. Furthermore, this work presents major research issues on malware detection including future directions to further advance knowledge and research in this field.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.