Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Neuromorphic computing using wavelength-division multiplexing (2209.03252v1)

Published 7 Sep 2022 in physics.optics and cs.ET

Abstract: Optical neural networks (ONNs), or optical neuromorphic hardware accelerators, have the potential to dramatically enhance the computing power and energy efficiency of mainstream electronic processors, due to their ultralarge bandwidths of up to 10s of terahertz together with their analog architecture that avoids the need for reading and writing data back and forth. Different multiplexing techniques have been employed to demonstrate ONNs, amongst which wavelength division multiplexing (WDM) techniques make sufficient use of the unique advantages of optics in terms of broad bandwidths. Here, we review recent advances in WDM based ONNs, focusing on methods that use integrated microcombs to implement ONNs. We present results for human image processing using an optical convolution accelerator operating at 11 Tera operations per second. The open challenges and limitations of ONNs that need to be addressed for future applications are also discussed.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.