Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Predictive Chance Constraint Rebalancing Approach to Mobility-on-Demand Services (2209.03214v2)

Published 7 Sep 2022 in eess.SY and cs.SY

Abstract: This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services, such as Uber or DiDi Rider. Such imbalances are due to uneven stochastic travel demand and can be prevented by proactively rebalance empty vehicles. To this end we propose a method that include estimated stochastic travel demand patterns into stochastic model predictive control (SMPC) for rebalancing of empty vehicles MoD ride-hailing service. More precisely, we first estimate passenger travel demand using Gaussian Process Regression (GPR), which provides demand uncertainty bounds for time pattern prediction. We then formulate a SMPC for the autonomous ride-hailing service and integrate demand predictions with uncertainty bounds into a receding horizon MoD optimization. In order to guarantee constraint satisfaction in the above optimization under estimated stochastic demand prediction, we employ a probabilistic constraining method with user defined confidence interval. Receding horizon MoD optimization with probabilistic constraints thereby calls for Chance Constrained Model Predictive Control (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data can naturally be embedded into the MoD optimization framework. We show that for a given minimal fleet size the imbalance in each station can be kept below a certain threshold with a user defined probability. Second, CCMPC can further be relaxed into a Mixed-Integer-LP (MILP) and we show that the MILP can be solved as a corresponding Linear-Program which always admits a integral solution. Finally, we demonstrate through high-fidelity transportation simulations, that by tuning the confidence bound on the chance constraint close to optimal oracle performance can be achieved. The corresponding median customer wait time is reduced by 4% compared to using only the mean prediction of the GPR.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.