Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improving Out-of-Distribution Detection via Epistemic Uncertainty Adversarial Training (2209.03148v2)

Published 5 Sep 2022 in cs.LG

Abstract: The quantification of uncertainty is important for the adoption of machine learning, especially to reject out-of-distribution (OOD) data back to human experts for review. Yet progress has been slow, as a balance must be struck between computational efficiency and the quality of uncertainty estimates. For this reason many use deep ensembles of neural networks or Monte Carlo dropout for reasonable uncertainty estimates at relatively minimal compute and memory. Surprisingly, when we focus on the real-world applicable constraint of $\leq 1\%$ false positive rate (FPR), prior methods fail to reliably detect OOD samples as such. Notably, even Gaussian random noise fails to trigger these popular OOD techniques. We help to alleviate this problem by devising a simple adversarial training scheme that incorporates an attack of the epistemic uncertainty predicted by the dropout ensemble. We demonstrate this method improves OOD detection performance on standard data (i.e., not adversarially crafted), and improves the standardized partial AUC from near-random guessing performance to $\geq 0.75$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.