Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Risk Aware Adaptive Belief-dependent Probabilistically Constrained Continuous POMDP Planning (2209.02679v2)

Published 6 Sep 2022 in cs.AI and cs.RO

Abstract: Although risk awareness is fundamental to an online operating agent, it has received less attention in the challenging continuous domain and under partial observability. This paper presents a novel formulation and solution for risk-averse belief-dependent probabilistically constrained continuous POMDP. We tackle a demanding setting of belief-dependent reward and constraint operators. The probabilistic confidence parameter makes our formulation genuinely risk-averse and much more flexible than the state-of-the-art chance constraint. Our rigorous analysis shows that in the stiffest probabilistic confidence case, our formulation is very close to chance constraint. However, our probabilistic formulation allows much faster and more accurate adaptive acceptance or pruning of actions fulfilling or violating the constraint. In addition, with an arbitrary confidence parameter, we did not find any analogs to our approach. We present algorithms for the solution of our formulation in continuous domains. We also uplift the chance-constrained approach to continuous environments using importance sampling. Moreover, all our presented algorithms can be used with parametric and nonparametric beliefs represented by particles. Last but not least, we contribute, rigorously analyze and simulate an approximation of chance-constrained continuous POMDP. The simulations demonstrate that our algorithms exhibit unprecedented celerity compared to the baseline, with the same performance in terms of collisions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.