Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Concentration of polynomial random matrices via Efron-Stein inequalities (2209.02655v2)

Published 6 Sep 2022 in cs.CC, cs.DM, cs.LG, math.PR, math.ST, and stat.TH

Abstract: Analyzing concentration of large random matrices is a common task in a wide variety of fields. Given independent random variables, many tools are available to analyze random matrices whose entries are linear in the variables, e.g. the matrix-Bernstein inequality. However, in many applications, we need to analyze random matrices whose entries are polynomials in the variables. These arise naturally in the analysis of spectral algorithms, e.g., Hopkins et al. [STOC 2016], Moitra-Wein [STOC 2019]; and in lower bounds for semidefinite programs based on the Sum of Squares hierarchy, e.g. Barak et al. [FOCS 2016], Jones et al. [FOCS 2021]. In this work, we present a general framework to obtain such bounds, based on the matrix Efron-Stein inequalities developed by Paulin-Mackey-Tropp [Annals of Probability 2016]. The Efron-Stein inequality bounds the norm of a random matrix by the norm of another simpler (but still random) matrix, which we view as arising by "differentiating" the starting matrix. By recursively differentiating, our framework reduces the main task to analyzing far simpler matrices. For Rademacher variables, these simpler matrices are in fact deterministic and hence, analyzing them is far easier. For general non-Rademacher variables, the task reduces to scalar concentration, which is much easier. Moreover, in the setting of polynomial matrices, our results generalize the work of Paulin-Mackey-Tropp. Using our basic framework, we recover known bounds in the literature for simple "tensor networks" and "dense graph matrices". Using our general framework, we derive bounds for "sparse graph matrices", which were obtained only recently by Jones et al. [FOCS 2021] using a nontrivial application of the trace power method, and was a core component in their work. We expect our framework to be helpful for other applications involving concentration phenomena for nonlinear random matrices.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube