Papers
Topics
Authors
Recent
2000 character limit reached

Energy Management of Multi-mode Hybrid Electric Vehicles based on Hand-shaking Multi-agent Learning (2209.02633v3)

Published 6 Sep 2022 in cs.LG, cs.MA, cs.SY, and eess.SY

Abstract: The future transportation system will be a multi-agent network where connected AI agents can work together to address the grand challenges in our age, e.g., mitigation of real-world driving energy consumption. Distinguished from the existing research on vehicle energy management, which decoupled multiple inputs and multiple outputs (MIMO) control into single-output(MISO) control, this paper studied a multi-agent deep reinforcement learning (MADRL) framework to deal with multiple control outputs simultaneously. A new hand-shaking strategy is proposed for the DRL agents by introducing an independence ratio, and a parametric study is conducted to obtain the best setting for the MADRL framework. The study suggested that the MADRL with an independence ratio of 0.2 is the best, and more than 2.4% of energy can be saved over the conventional DRL framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.