Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Adaptive Column Compression Family for Self-Driving Databases (2209.02334v1)

Published 6 Sep 2022 in cs.DB

Abstract: Modern in-memory databases are typically used for high-performance workloads, therefore they have to be optimized for small memory footprint and high query speed at the same time. Data compression has the potential to reduce memory requirements but often reduces query speed too. In this paper we propose a novel, adaptive compressor that offers a new trade-off point of these dimensions, achieving better compression than LZ4 while reaching query speeds close to the fastest existing segment encoders. We evaluate our compressor both with synthetic data in isolation and on the TPC-H and Join Order Benchmarks, integrated into a modern relational column store, Hyrise.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.