Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Impact of Scaled Image on Robustness of Deep Neural Networks (2209.02132v2)

Published 2 Sep 2022 in cs.CV

Abstract: Deep neural networks (DNNs) have been widely used in computer vision tasks like image classification, object detection and segmentation. Whereas recent studies have shown their vulnerability to manual digital perturbations or distortion in the input images. The accuracy of the networks is remarkably influenced by the data distribution of their training dataset. Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks. In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples. The aim of our work is to study the impact of scaled images on the performance of advanced DNNs. We perform experiments on several state-of-the-art deep neural network architectures on the proposed ImageNet-CS, and the results show a significant positive correlation between scaling size and accuracy decline. Moreover, based on ResNet50 architecture, we demonstrate some tests on the performance of recent proposed robust training techniques and strategies like Augmix, Revisiting and Normalizer Free on our proposed ImageNet-CS. Experiment results have shown that these robust training techniques can improve networks' robustness to scaling transformation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.