Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Classical and Quantum Random Walks to Identify Leaders in Criminal Networks (2209.02005v1)

Published 5 Sep 2022 in cs.SI and physics.soc-ph

Abstract: Random walks simulate the randomness of objects, and are key instruments in various fields such as computer science, biology and physics. The counter part of classical random walks in quantum mechanics are the quantum walks. Quantum walk algorithms provide an exponential speedup over classical algorithms. Classical and quantum random walks can be applied in social network analysis, and can be used to define specific centrality metrics in terms of node occupation on single-layer and multilayer networks. In this paper, we applied these new centrality measures to three real criminal networks derived from an anti-mafia operation named Montagna and a multilayer network derived from them. Our aim is to (i) identify leaders in our criminal networks, (ii) study the dependence between these centralities and the degree, (iii) compare the results obtained for the real multilayer criminal network with those of a synthetic multilayer network which replicates its structure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.