Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Induced Cycles and Paths Are Harder Than You Think (2209.01873v1)

Published 5 Sep 2022 in cs.CC and cs.DS

Abstract: The goal of the paper is to give fine-grained hardness results for the Subgraph Isomorphism (SI) problem for fixed size induced patterns $H$, based on the $k$-Clique hypothesis that the current best algorithms for Clique are optimal. Our first main result is that for any pattern graph $H$ that is a {\em core}, the SI problem for $H$ is at least as hard as $t$-Clique, where $t$ is the size of the largest clique minor of $H$. This improves (for cores) the previous known results [Dalirrooyfard-Vassilevska W. STOC'20] that the SI for $H$ is at least as hard as $k$-clique where $k$ is the size of the largest clique {\em subgraph} in $H$, or the chromatic number of $H$ (under the Hadwiger conjecture). For detecting \emph{any} graph pattern $H$, we further remove the dependency of the result of [Dalirrooyfard-Vassilevska W. STOC'20] on the Hadwiger conjecture at the cost of a sub-polynomial decrease in the lower bound. The result for cores allows us to prove that the SI problem for induced $k$-Path and $k$-Cycle is harder than previously known. Previously [Floderus et al. Theor. CS 2015] had shown that $k$-Path and $k$-Cycle are at least as hard to detect as a $\lfloor k/2\rfloor$-Clique. We show that they are in fact at least as hard as $3k/4-O(1)$-Clique, improving the conditional lower bound exponent by a factor of $3/2$. Finally, we provide a new conditional lower bound for detecting induced $4$-cycles: $n{2-o(1)}$ time is necessary even in graphs with $n$ nodes and $O(n{1.5})$ edges.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.