Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture image analysis based on joint of multi directions GLCM and local ternary patterns (2209.01866v1)

Published 5 Sep 2022 in cs.CV

Abstract: Human visual brain use three main component such as color, texture and shape to detect or identify environment and objects. Hence, texture analysis has been paid much attention by scientific researchers in last two decades. Texture features can be used in many different applications in commuter vision or machine learning problems. Since now, many different approaches have been proposed to classify textures. Most of them consider the classification accuracy as the main challenge that should be improved. In this article, a new approach is proposed based on combination of two efficient texture descriptor, co-occurrence matrix and local ternary patterns (LTP). First of all, basic local binary pattern and LTP are performed to extract local textural information. Next, a subset of statistical features is extracted from gray-level co-occurrence matrixes. Finally, concatenated features are used to train classifiers. The performance is evaluated on Brodatz benchmark dataset in terms of accuracy. Experimental results show that proposed approach provide higher classification rate in comparison with some state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Akshakhi Kumar Pritoonka (2 papers)
  2. Faeze Kiani (8 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.