Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Benchmark for Unsupervised Anomaly Detection in Multi-Agent Trajectories (2209.01838v1)

Published 5 Sep 2022 in cs.RO

Abstract: Human intuition allows to detect abnormal driving scenarios in situations they never experienced before. Like humans detect those abnormal situations and take countermeasures to prevent collisions, self-driving cars need anomaly detection mechanisms. However, the literature lacks a standard benchmark for the comparison of anomaly detection algorithms. We fill the gap and propose the R-U-MAAD benchmark for unsupervised anomaly detection in multi-agent trajectories. The goal is to learn a representation of the normal driving from the training sequences without labels, and afterwards detect anomalies. We use the Argoverse Motion Forecasting dataset for the training and propose a test dataset of 160 sequences with human-annotated anomalies in urban environments. To this end we combine a replay of real-world trajectories and scene-dependent abnormal driving in the simulation. In our experiments we compare 11 baselines including linear models, deep auto-encoders and one-class classification models using standard anomaly detection metrics. The deep reconstruction and end-to-end one-class methods show promising results. The benchmark and the baseline models will be publicly available.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube