Learning from a Biased Sample (2209.01754v3)
Abstract: The empirical risk minimization approach to data-driven decision making requires access to training data drawn under the same conditions as those that will be faced when the decision rule is deployed. However, in a number of settings, we may be concerned that our training sample is biased in the sense that some groups (characterized by either observable or unobservable attributes) may be under- or over-represented relative to the general population; and in this setting empirical risk minimization over the training set may fail to yield rules that perform well at deployment. We propose a model of sampling bias called conditional $\Gamma$-biased sampling, where observed covariates can affect the probability of sample selection arbitrarily much but the amount of unexplained variation in the probability of sample selection is bounded by a constant factor. Applying the distributionally robust optimization framework, we propose a method for learning a decision rule that minimizes the worst-case risk incurred under a family of test distributions that can generate the training distribution under $\Gamma$-biased sampling. We apply a result of Rockafellar and Uryasev to show that this problem is equivalent to an augmented convex risk minimization problem. We give statistical guarantees for learning a model that is robust to sampling bias via the method of sieves, and propose a deep learning algorithm whose loss function captures our robust learning target. We empirically validate our proposed method in a case study on prediction of mental health scores from health survey data and a case study on ICU length of stay prediction.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.