Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A multi-scale framework for neural network enhanced methods to the solution of partial differential equations (2209.01717v1)

Published 5 Sep 2022 in math.NA and cs.NA

Abstract: In the present work, a multi-scale framework for neural network enhanced methods is proposed for approximation of function and solution of partial differential equations (PDEs). By introducing the multi-scale concept, the total solution of the target problem could be decomposed into two parts, i.e. the coarse scale solution and the fine scale solution. In the coarse scale, the conventional numerical methods (e.g. finite element methods) are applied and the coarse scale solution could be obtained. In the fine scale, the neural networks is introduced to formulate the solution. The custom loss functions are developed by taking into account the governing equations and boundary conditions of PDEs, the constraints and the interaction from coarse scale. The proposed methods are illustrated and examined by various of testing cases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.