Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Perception Simplex: Verifiable Collision Avoidance in Autonomous Vehicles Amidst Obstacle Detection Faults (2209.01710v2)

Published 4 Sep 2022 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: Advances in deep learning have revolutionized cyber-physical applications, including the development of Autonomous Vehicles. However, real-world collisions involving autonomous control of vehicles have raised significant safety concerns regarding the use of Deep Neural Networks (DNN) in safety-critical tasks, particularly Perception. The inherent unverifiability of DNNs poses a key challenge in ensuring their safe and reliable operation. In this work, we propose Perception Simplex (PS), a fault-tolerant application architecture designed for obstacle detection and collision avoidance. We analyze an existing LiDAR-based classical obstacle detection algorithm to establish strict bounds on its capabilities and limitations. Such analysis and verification have not been possible for deep learning-based perception systems yet. By employing verifiable obstacle detection algorithms, PS identifies obstacle existence detection faults in the output of unverifiable DNN-based object detectors. When faults with potential collision risks are detected, appropriate corrective actions are initiated. Through extensive analysis and software-in-the-loop simulations, we demonstrate that PS provides predictable and deterministic fault tolerance against obstacle existence detection faults, establishing a robust safety guarantee.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.