Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semantic Segmentation in Learned Compressed Domain (2209.01355v1)

Published 3 Sep 2022 in cs.CV and eess.IV

Abstract: Most machine vision tasks (e.g., semantic segmentation) are based on images encoded and decoded by image compression algorithms (e.g., JPEG). However, these decoded images in the pixel domain introduce distortion, and they are optimized for human perception, making the performance of machine vision tasks suboptimal. In this paper, we propose a method based on the compressed domain to improve segmentation tasks. i) A dynamic and a static channel selection method are proposed to reduce the redundancy of compressed representations that are obtained by encoding. ii) Two different transform modules are explored and analyzed to help the compressed representation be transformed as the features in the segmentation network. The experimental results show that we can save up to 15.8\% bitrates compared with a state-of-the-art compressed domain-based work while saving up to about 83.6\% bitrates and 44.8\% inference time compared with the pixel domain-based method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.