Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Semi-supervised Training for Knowledge Base Graph Self-attention Networks on Link Prediction (2209.01350v1)

Published 3 Sep 2022 in cs.AI and cs.LG

Abstract: The task of link prediction aims to solve the problem of incomplete knowledge caused by the difficulty of collecting facts from the real world. GCNs-based models are widely applied to solve link prediction problems due to their sophistication, but GCNs-based models are suffering from two problems in the structure and training process. 1) The transformation methods of GCN layers become increasingly complex in GCN-based knowledge representation models; 2) Due to the incompleteness of the knowledge graph collection process, there are many uncollected true facts in the labeled negative samples. Therefore, this paper investigates the characteristic of the information aggregation coefficient (self-attention) of adjacent nodes and redesigns the self-attention mechanism of the GAT structure. Meanwhile, inspired by human thinking habits, we designed a semi-supervised self-training method over pre-trained models. Experimental results on the benchmark datasets FB15k-237 and WN18RR show that our proposed self-attention mechanism and semi-supervised self-training method can effectively improve the performance of the link prediction task. If you look at FB15k-237, for example, the proposed method improves Hits@1 by about 30%.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.