Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Contextual Recognition of Rare Words with an Alternate Spelling Prediction Model (2209.01250v1)

Published 2 Sep 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Contextual ASR, which takes a list of bias terms as input along with audio, has drawn recent interest as ASR use becomes more widespread. We are releasing contextual biasing lists to accompany the Earnings21 dataset, creating a public benchmark for this task. We present baseline results on this benchmark using a pretrained end-to-end ASR model from the WeNet toolkit. We show results for shallow fusion contextual biasing applied to two different decoding algorithms. Our baseline results confirm observations that end-to-end models struggle in particular with words that are rarely or never seen during training, and that existing shallow fusion techniques do not adequately address this problem. We propose an alternate spelling prediction model that improves recall of rare words by 34.7% relative and of out-of-vocabulary words by 97.2% relative, compared to contextual biasing without alternate spellings. This model is conceptually similar to ones used in prior work, but is simpler to implement as it does not rely on either a pronunciation dictionary or an existing text-to-speech system.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.