Papers
Topics
Authors
Recent
Search
2000 character limit reached

How Descriptive are GMRES Convergence Bounds?

Published 2 Sep 2022 in math.NA and cs.NA | (2209.01231v1)

Abstract: GMRES is a popular Krylov subspace method for solving linear systems of equations involving a general non-Hermitian coefficient matrix. The conventional bounds on GMRES convergence involve polynomial approximation problems in the complex plane. Three popular approaches pose this approximation problem on the spectrum, the field of values, or pseudospectra of the coefficient matrix. We analyze and compare these bounds, illustrating with six examples the success and failure of each. When the matrix departs from normality due only to a low-dimensional invariant subspace, we discuss how these bounds can be adapted to exploit this structure. Since the Arnoldi process that underpins GMRES provides approximations to the pseudospectra, one can estimate the GMRES convergence bounds as an iteration proceeds.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.